Abstract

Monitoring pest populations in paddy fields is important to effectively implement integrated pest management. Light traps are widely used to monitor field pests all over the world. Most conventional light traps still involve manual identification of target pests from lots of trapped insects, which is time-consuming, labor-intensive and error-prone, especially in pest peak periods. In this paper, we developed an automatic monitoring system for rice light-trap pests based on machine vision. This system is composed of an intelligent light trap, a computer or mobile phone client platform and a cloud server. The light trap firstly traps, kills and disperses insects, then collects images of trapped insects and sends each image to the cloud server. Five target pests in images are automatically identified and counted by pest identification models loaded in the server. To avoid light-trap insects piling up, a vibration plate and a moving rotation conveyor belt are adopted to disperse these trapped insects. There was a close correlation (r=0.92) between our automatic and manual identification methods based on the daily pest number of one-year images from one light trap. Field experiments demonstrated the effectiveness and accuracy of our automatic light trap monitoring system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.