Abstract
SummaryOne of the best ways to evaluate the coupled heat and mass transfer in soil is to measure the heat flux and water distribution simultaneously. For this purpose, we developed an apparatus for measuring the one‐dimensional steady‐state heat flux and water distribution in unsaturated soil under reduced air pressure. The system was tested using four samples with known thermal conductivity (0.6–8.0 W m−1 K−1). We confirmed that the system could measure the one‐dimensional steady‐state heat flux under a fixed temperature difference between ends of the samples over a wide range of thermal conductivity values. Time domain reflectometry was used to measure the water distribution with a repeatability of less than ± 1.0%. We used the apparatus to measure the soil heat flux and distribution of water content and temperature under steady‐state conditions with reduced air pressure. The initial volumetric water content, θini, of the soil samples was set at 0.20 and 0.40 m3m−3. For a θini of 0.20, the heat flux was not significantly affected by air pressure, and the water content on the hot side decreased whilst that on the cold side increased, i.e. a pronounced water content gradient was formed. For a θini of 0.40, the heat flux increased sharply with reduced air pressure, and the water content did not change, i.e. a homogeneous water distribution was observed. The increase in the heat flux with air pressure reduction is caused by the vapour transfer in soil pores. We found that a large vapour transfer took place in the soil with the homogeneous water distribution, and that the vapour transfer was less in the soil with the pronounced water content gradient. These experimental facts were entirely different from the traditional knowledge of vapour transfer in soil under temperature gradients. A lack of data on heat flux must have resulted in the previously incorrect conclusions. The new apparatus will serve to clarify the intricate phenomena of thermally induced vapour transfer in unsaturated soil in further experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.