Abstract

The Al-Zn sacrificial anodes are widely used for cathodic protection in marine steel structures. This study evaluates the impact of bismuth addition on the electrochemical properties of the Al-Zn sacrificial anode in artificial seawater. The microstructure analysis confirms the presence of uniformly distributed intermetallic β-AlFeSi and spherical Bi within the α-Al matrix. The open circuit potential (OCP) comparison between Al-Zn-Bi and carbon steel reveals a potential difference of approximately 400 mV, indicating sufficient cathodic protection for the steel. Electrochemical impedance measurements indicate the initial hindered dissolution of the anode due to surface film formation, which later dissociates due to the aggressive attack of Cl− species in the electrolyte. The sufficiently negative surface potential (−0.875 Vvs. Ag/AgCl) observed at 10 mA cm−2 demonstrates the suitability of anode for fulfilling the cathodic protection criteria of steel structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.