Abstract

This paper discusses the design of a micromachined regenerator in an Active Magnetic Regenerative Refrigeration (AMRR) system for space applications. The AMRR system is designed to provide continuous remote/distributed cooling at about 2K and reject heat at temperatures of about 15K. This paper first discusses the general thermal and fluid performance requirements for an AMRR regenerator, a unique structured bed configuration that enables the regenerator to meet these requirements, and its thermal and fluid performance based on numerical analyses. The paper then discusses the general design consideration for the magnetic field driving the regenerator for optimal thermal performance, and the analysis processes to optimize the variation rate of the magnetic field in an actual superconducting magnet during the isothermal processes of the AMRR cycle to enhance the performance of an actual regenerator. The paper finally presents the thermal performance of the regenerator from such iterative design optimization processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call