Abstract

Objective : We investigated the mechanism by which the ARCHITECT cyclosporine (CsA) chemiluminescent microparticle immunoassay (CMIA) eliminates cross-reactivity to CsA metabolites AM1 and AM9, despite its use of a monoclonal antibody which shows cross-reactivity in fluorescence polarization immunoassays. Design and methods : The CMIA was accomplished by incubating an extracted blood sample with magnetic microparticles coated with a very low amount of anti-CsA antibody. After a wash step the microparticles were incubated with a chemiluminescent CsA tracer, followed by a second wash step and measurement of chemiluminescence. The reagent concentrations of salt and detergent were optimized to maximize CsA binding and minimize metabolite interference. Results : Elimination of CsA metabolite cross-reactivity was shown using purified metabolites and blood samples containing native CsA metabolites. The CMIA demonstrated precision and sensitivity acceptable for use in a clinical setting. Conclusion : We conclude that it is possible to eliminate CsA metabolite immuno-cross-reactivity by careful assay design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.