Abstract
The purpose of this study was to use a tape casting technique to develop an Al2O3 fiber-reinforced Al2O3-based ceramic material (Al2O3-fiber/Al2O3 composite) into a new type of dental ceramic. The Al2O3-based ceramic used a matrix consisting of 60 wt% Al2O3 powder and 40 wt% SiO2-B2O3 powder. The prepreg sheets of Al2O3-fiber/Al2O3 composite (in which uniaxially aligned Al2O3 fibers were infiltrated with the Al2O3-based matrix) were fabricated continuously using tape casting technique with a doctor blade system. Multilayer preforms of Al2O3-fiber/Al2O3 composite sheets were then sintered at a maximum temperature of 1000 degrees C under an atmospheric pressure in a furnace. The results showed that the shrinkage and bending properties of Al2O3-fiber/Al2O3 composite exceeded those of unreinforced Al2O3--hence demonstrating the positive effects of fiber reinforcement. In conclusion, the tape casting technique has been utilized to successfully develop a new type of dental ceramic material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.