Abstract
Background and objectiveTo develop a healthcare chatbot service (AI-guided bot) that conducts real-time conversations using large language models to provide accurate health information to patients. MethodsTo provide accurate and specialized medical responses, we integrated several cancer practice guidelines. The size of the integrated meta-dataset was 1.17 million tokens. The integrated and classified metadata were extracted, transformed into text, segmented to specific character lengths, and vectorized using the embedding model. The AI-guide bot was implemented using Python 3.9. To enhance the scalability and incorporate the integrated dataset, we combined the AI-guide bot with OpenAI and the LangChain framework. To generate user-friendly conversations, a language model was developed based on Chat-Generative Pretrained Transformer (ChatGPT), an interactive conversational chatbot powered by GPT-3.5. The AI-guide bot was implemented using ChatGPT3.5 from Sep. 2023 to Jan. 2024. ResultsThe AI-guide bot allowed users to select their desired cancer type and language for conversational interactions. The AI-guided bot was designed to expand its capabilities to encompass multiple major cancer types. The performance of the AI-guide bot responses was 90.98 ± 4.02 (obtained by summing up the Likert scores). ConclusionsThe AI-guide bot can provide medical information quickly and accurately to patients with cancer who are concerned about their health.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have