Abstract

In this study, an active microvibration isolation system is developed for precision space payload. Vibrational environment affects the performance and reliability of measuring instruments. To improve the measurement accuracy of the precision space payload, an active vibration isolation system based on eight vibration isolation modules, which are applied for microvibration isolation on the satellite, is designed. A vibration suppression control strategy for multiple degrees of freedom is studied. A hybrid control method involving a feedback and a feedforward controller based on a nonlinear tracking differentiator and an nth-order weak integrator, respectively, was adopted to optimize the suppression effect of microvibration. As a result, the microvibration of the order of mg can be reduced to the order of μg through the active control of modules. Research experiment results show that the root cumulative power spectral density of the systemic sensitive frequency band in the range of 0.5–200 Hz, i.e., microvibration frequency band in the optical reference cavity, has been reduced to in the order of μg in three directions, which satisfied the requirements of aerospace engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.