Abstract

Air-breathing proton exchange membrane fuel cells (AB-PEMFCs) can reduce the cost, complexity, noise, volume, and weight of fuel cells and can enhance their reliability. However, such cells are still typically characterized by low output power densities. In this study, to overcome the inherent weaknesses of low power density and oxygen concentration without mobility loss, we have adopted a microscale synthetic jet air breather (a crucial balance-of-plant device), which supplies air to the cathode side of the flow field of a planar AB-PEMFC. A synthetic jet air breather consists of a PZT diaphragm actuator, small cylindrical cavity, inlet and outlet channels, and a pump body. The flow rate of the fabricated synthetic jet air breather is more than 400 cc/min at 550 Hz with a power consumption of less than 0.3 W. An AB-PEMFC equipped with a microscale-synthetic jet air breather shows higher performance and stability, obtaining a maximum power density of 188 mW/cm2 at 400 mA/cm2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call