Abstract
The goal of this research was to develop an intuitive wearable human-machine interface (HMI), utilizing an optical sensor. The proposed system quantifies wrist pronation and supination using an optical displacement sensor. Compared with existing systems, this HMI ensures intuitiveness by relying on direct measurement of forearm position, minimizes involved sensors, and is expected to be long-lasting. To test for feasibility, the developed HMI was implemented to control a prosthetic wrist based on forearm rotation of able-bodied subjects. Performance of optical sensor system (OSS) prosthesis control was compared to electromyography (EMG) based direct control, for six able-bodied individuals, using a clothespin relocation task. Results showed that the performance of OSS control was comparable to direct control, therefore validating the feasibility of the OSS HMI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.