Abstract
Liquid chromatography-mass spectrometry (LC-MS) is an effective tool for high-throughput quantification of oligonucleotides that is crucial for understanding their biological roles and developing diagnostic tests. This paper presents a high-throughput LC-MS/MS method that may be versatilely applied for a wide range of oligonucleotides, making it a valuable tool for rapid screening and discovery. The method is demonstrated using an in-house synthesized MALAT-1 Antisense oligonucleotide (ASO) as a test case. Biological samples were purified using a reversed liquid-liquid extraction process automated by a liquid handling workstation and analyzed with ion-pairing LC-MS/MS. The assay was evaluated for sensitivity (LLOQ = 2nM), specificity, precision, accuracy, recovery, matrix effect, and stability in rat cerebrospinal fluid (CSF) and plasma. Besides some existing considerations such as column selection, ion-pairing reagent, and sample purification, our work focused on the following four subtopics: 1) selecting the appropriate Multiple Reaction Monitoring (MRM) transition to maximize sensitivity for trace-level ASO in biological samples; 2) utilizing a generic risk-free internal standard (tenofovir) to avoid crosstalk interference from the oligo internal standard commonly utilized in the LC-MS assay; 3) automating the sample preparation process to increase precision and throughput; and 4) comparing liquid-liquid extraction (LLE) and solid-phase extraction (SPE) as sample purification methods in oligo method development. The study quantified the concentration of MALAT-1 ASO in rat CSF and plasma after intrathecal injection and used the difference between the two matrices to evaluate the injection technique. The results provide a solid foundation for further internal oligonucleotide discovery and development.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have