Abstract

BackgroundBacterial endosymbionts are found across the eukaryotic kingdom and profoundly impacted eukaryote evolution. In many endosymbiotic associations with vertically inherited symbionts, highly complementary metabolic functions encoded by host and endosymbiont genomes indicate integration of metabolic processes between the partner organisms. While endosymbionts were initially expected to exchange only metabolites with their hosts, recent evidence has demonstrated that also host-encoded proteins can be targeted to the bacterial symbionts in various endosymbiotic systems. These proteins seem to participate in regulating symbiont growth and physiology. However, mechanisms required for protein targeting and the specific endosymbiont targets of these trafficked proteins are currently unexplored owing to a lack of molecular tools that enable functional studies of endosymbiotic systems.ResultsHere we show that the trypanosomatid Angomonas deanei, which harbors a β-proteobacterial endosymbiont, is readily amenable to genetic manipulation. Its rapid growth, availability of full genome and transcriptome sequences, ease of transfection, and high frequency of homologous recombination have allowed us to stably integrate transgenes into the A. deanei nuclear genome, efficiently generate null mutants, and elucidate protein localization by heterologous expression of a fluorescent protein fused to various putative targeting signals. Combining these novel tools with proteomic analysis was key for demonstrating the routing of a host-encoded protein to the endosymbiont, suggesting the existence of a specific endosymbiont-sorting machinery in A. deanei.ConclusionsAfter previous reports from plants, insects, and a cercozoan amoeba we found here that also in A. deanei, i.e. a member of a fourth eukaryotic supergroup, host-encoded proteins can be routed to the bacterial endosymbiont. This finding adds further evidence to our view that the targeting of host proteins is a general strategy of eukaryotes to gain control over and interact with a bacterial endosymbiont. The molecular resources reported here establish A. deanei as a time and cost efficient reference system that allows for a rigorous dissection of host-symbiont interactions that have been, and are still being shaped over evolutionary time. We expect this system to greatly enhance our understanding of the biology of endosymbiosis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0820-z) contains supplementary material, which is available to authorized users.

Highlights

  • Bacterial endosymbionts are found across the eukaryotic kingdom and profoundly impacted eukaryote evolution

  • Combining proteomic analysis with the newly developed molecular capabilities, we demonstrate that the host Endosymbiont-targeted Protein 1 (ETP1) is routed to the endosymbiont suggesting the existence of a sorting machinery in A. deanei that delivers proteins to the endosymbiont

  • Genome and transcriptome assemblies set the foundation for developing genetic tools Since the available draft assembly of the A. deanei nuclear genome is still highly fragmented, information important for building molecular tools for this protist, including sequences of long genomic contigs spanning multiple genes and expression levels of specific genes, is missing

Read more

Summary

Introduction

Bacterial endosymbionts are found across the eukaryotic kingdom and profoundly impacted eukaryote evolution. In many endosymbiotic associations with vertically inherited symbionts, highly complementary metabolic functions encoded by host and endosymbiont genomes indicate integration of metabolic processes between the partner organisms. While endosymbionts were initially expected to exchange only metabolites with their hosts, recent evidence has demonstrated that host-encoded proteins can be targeted to the bacterial symbionts in various endosymbiotic systems. These proteins seem to participate in regulating symbiont growth and physiology. While endosymbionts where initially expected to exchange only metabolites with their host cells, recent evidence has demonstrated that it is metabolites, and host-encoded proteins that can be targeted from the cytoplasm of the host cell to the bacterial symbiont. In certain plants and insects, nuclear-encoded peptides have been shown to be routed into their endosymbionts where they regulate/ modulate endosymbiont growth and division [13,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call