Abstract

The Genus Alexandrium is a widespread dinoflagellate marine phytoplankton that is the primary causative organism causing Paralytic Shellfish Poisoning (PSP) intoxications in European waters. EU food safety directives specify that EU Member States must implement a routine monitoring programme to mitigate risks associated with bio-accumulation of biotoxins by bivalve shellfish, such as those produced by Alexandrium. This strategic drive comprises of both direct testing of bivalve flesh for the presence of regulated toxins and an early warning phytoplankton monitoring programme. In the UK the flesh testing moved away from animal bio-assays to analytical chemistry techniques, whereas phytoplankton monitoring methods have seen little technological advancement since implementation. Methods currently utilize light microscopy and manual enumeration of different algal species. These methods although proven are time consuming, reliant on highly trained staff, have high limits of detection (LOD) with low specificity, unable to reliably identify Alexandrium to species level. The implications of these limitations of the techniques mean that in the case of Alexandrium the LOD is also the action limit and as such it is easy to miss positive samples affecting the efficacy of any early warning strategy. This study outlines the development, preliminary method characterisation, validation and trial implementation of an alternative early warning technique, utilizing quantitative PCR to identify water samples containing Alexandrium cells. The approach outlined in this document, showed an improved correlation with flesh toxicity, improved sensitivity, improved throughput compared to traditional light microscopy methods and there was also good correlation with higher cell abundance samples when compared to the light microscopy results. The application of this approach to routine water samples was explored and was found to demonstrate potential as a corroborative method for use during flesh intoxication episodes. This study offers potential for future improvements in the accuracy and sensitivity of phytoplankton monitoring whilst ensuring continuity of public safety, providing cost savings and offering new research opportunities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.