Abstract

A stochastic constitutive model has been developed that explicitly acknowledges the nanometer size dynamic heterogeneity of glassy materials, where the distribution of the viscoelastic relaxation times emerges naturally as a result of the dynamic heterogeneity. A set of stochastic differential equations for local stresses and entropy describing behavior of a mesoscopic domain are developed, and the observed macroscopic response of the material is obtained as an average of an ensemble of domains. The stochastic constitutive model naturally predicts and provides a mechanism for the postyield stress softening and its dependence on physical aging that is observed during constant strain rate uniaxial deformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.