Abstract

The generation of the second and higher order moment equations for a set of stochastic differential equations based on Ito's differential lemma is difficult, even for small system of equations. From the knowledge of the statistical properties of the Gaussian white noises associated with the parameters and input coefficients of a set of stochastic differential equations of typeA.Ż+B.Z=C(t), a way to automatically generate the second order moment equations in a computer is presented in this paper. The resulting set of first and second order moment equations is also presented in the same state-space form of the original set of stochastic differential equations through a vectorization of the correlation matrix, which takes advantage of its symmetry. The procedure involved here avoids the inversion of matrixA to apply Ito's differential lemma. Therefore, the presented numerical implementation reduces the computational effort required in the formulation and solution of the moment equations. Moreover, other robust and efficient numerical deterministic integration schemes can be equally applied to the solution of the moment equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call