Abstract

Fine-grained cohesive sediments in estuaries play a critical role in sediment transport and biogeochemical cycles in estuaries. Due to the convergence of marine saltwater and freshwater runoff, combined with periodic tidal cycles, fine-grained sediments exhibit intricate flocculation processes that are challenging to simulate. A size-resolved flocculation module using a bin-based scheme aids in modeling these processes but is hindered by high computational costs. In this study, we develop a new spectrum-based scheme based on the spectral shape of floc size distribution from the original bin-based scheme to expedite modeling execution. This new scheme is implemented in the Stony Brook Parallel Ocean Model (sbPOM) and applied to simulate fine-grained sediment transport in the Hudson River estuary. The effectiveness of this spectrum-based scheme is assessed by comparing its simulations with observations and results from the original bin-based scheme. The findings indicate that the new scheme can simulate the evolution of suspended sediment concentration well at a specific point by comparisons with in-situ observations. Specifically, the results of the 50 paired experiments show an average percentage difference of 1.86% and an average speedup ratio of 4.51 times compared to the original bin-based scheme. In summary, the new spectrum-based scheme offers significant acceleration benefits for the size-resolved flocculation module and has the potential for widespread application in simulating fine-grained sediments in estuaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.