Abstract

An electrochemical sensor based on a conformation-changing aptamer is reported to detect soluble KIT, a cancer biomarker, in human serum. The sensor was fabricated with a ferrocene-labeled aptamer (Kd < 5 nM) conjugated to a gold electrode. Quantitative KIT detection was achieved using electrochemical impedance spectroscopy (EIS) and square-wave voltammetry (SWV). EIS was used to optimize experimental parameters such as the aptamer-to-spacer ratio, aptamer immobilization time, pH, and KIT incubation time, and the sensor surface was characterized using voltammetry. The assay specificity was demonstrated using interfering species and exhibited high specificity toward the target protein. The aptasensor showed a wide dynamic range, 10 pg/mL-100 ng/mL in buffer, with a 1.15 pg/mL limit of detection. The sensor also has a linear response to KIT spiked in human serum and successfully detected KIT in cancer-cell-conditioned media. The proposed aptasensor has applications as a continuous or intermittent approach for cancer therapy monitoring and diagnostics (theranostics).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.