Abstract

The development of a cost-efficient braille device is a crucial challenge in haptic technology to improve the integration of visually impaired people. Exclusion of any group threatens the proper functioning of society. Commercially available braille devices still utilize piezoelectric actuators, which are expensive and bulky. The challenge of a more adapted braille device lies in the integration of a high number of actuators─on a millimeter scale─in order to independently move a matrix of pins acting as tactile cues. Unfortunately, no actuation strategy has been adapted to tackle this challenge. In this study, we develop a soft actuator based on a thermosensitive poly(N-isopropylacrylamide) (PNIPAM) gel. We introduce macroporosity to the gel (pores of 10 to 100 μm). It overcomes the diffusion─which is the limiting kinetic factor─and accelerates the gel response time from hours for the bulk gel to seconds for the macroporous gel. We study the properties of porous gels with various porosities. We also compare a mechanically reinforced nanocomposite gel (made of PNIPAM and Laponite clay) to a "classic" gel. As a result, we develop a fast-actuating gel with high cyclic performance. We then develop a single-pin braille setup, where actuation is controlled thanks to a swift temperature control of a macroporous gel cylinder. This new strategy offers a very promising actuation technology. It offers a simple and cost-efficient alternative to the current braille devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call