Abstract

Haptic devices worn on the forearm have the ability to provide communication while freeing the user’s hands for manipulation tasks. We introduce a multi-modal haptic device with a rigid rotational housing and three soft fiber-constrained linear pneumatic actuators. Soft pneumatic actuators are used because of their compliance, light weight, and simplicity, while rigid components provide robust and precise control. The soft pneumatic actuators provide linear horizontal and vertical movements, and the rigid housing, affixed to a motor, provides rotational movement of the tactor. The device can produce normal, shear, vibration, and torsion skin deformation cues by combining the movement of the soft pneumatic actuators with the rotational housing. The tactor is able to provide a shear force of up to 0.47 N and a normal force of up to 1.3 N. To elucidate the physical design principle and the actuation strategy, the static force and displacement of the soft tactor are modeled as a function of material, design parameters, and pressure. The models were validated experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.