Abstract

We present the development of a small flapping robot for use as an observation system in hazardous environments. An isometric physical model was constructed based on the observations of body and wing motions during takeoff of a butterfly, and we compared the flapping motion of the model with that of a butterfly. A computational model based on the finite-element method is used to analyze the vortex around the wing of the model during takeoff of the constructed robot. Computation results clarify the takeoff mechanism of the model and show the feasibility of a small flying device employing a flapping mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.