Abstract
This paper presents an LQR controller approach for the simulation and controls of an affordable commercial humanoid robot doing a handstand on a high bar, by considering it as an underactuated 3-link inverted pendulum with off-centered masses. The developments presented include: i) the software development for interfacing the Matlab® Real Time Workshop Toolbox® with the humanoid robot servos; ii) the identification of the internal and external dynamic parameter of the humanoid servos and structure, respectively; iii) the dynamics modeling and simulation of the humanoid robot; iv) the deduction of the equations of motion for an underactuated n-link inverted pendulum. Simulation results proved the adequacy of LQR controller.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have