Abstract

Accurate mass measurements are used to determine the elemental composition and formulae of molecules to confirm their identity or to assist in their characterization. Currently, the most widely used techniques for measuring exact masses employ magnetic sector instruments, Fourier transform ion cyclotron resonance mass spectrometers and lower resolution instruments such as time-of-flight (TOF) and quadrupole-TOF. This paper reports the accurate mass measurement using a triple quadrupole mass spectrometer. Indeed, the recently introduced triple quadrupole mass spectrometer, with unique enhanced mass-resolution capability, has demonstrated simple data acquisition methods and requires few experiments to measure exact masses with accuracy and determines elemental compositions of both protonated and deprotonated molecules. All the accurate mass measurements were performed using both positive and negative electrospray ionization in enhanced mass-resolution mode (peak width of 0.1 Th FWMH). Several new drug entities were investigated as simulated unknowns and analyzed by means of an accurate mass liquid chromatography/electrospray ionization mass spectrometry (AM-LC/ESI-MS) method. The accurate mass measurements resulted in only one proposed elemental composition for all tested compounds, using reasonable elemental limits and mass tolerance for the calculation. Moreover, all the experimentally determined accurate mass measurements gave satisfactory results in terms of accuracy (lower than 5 ppm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.