Abstract

Bacillus anthracis, the causative agent of anthrax is a Gram-positive, non-motile, spore forming bacterium. Its spores can persist in soil and water for years and can also be aerosolized. A rapid, sensitive and specific method to detect B. anthracis is important for clinical management and preventing spread of anthrax. Loop-mediated isothermal amplification (LAMP) assay is a rapid technique that amplifies target DNA in isothermal conditions with high sensitivity and specificity. In this study, a LAMP assay set targeting a chromosomal and two plasmid markers was developed. The individual assays of the LAMP set targeting pXO1 plasmid (lef), pXO2 plasmid (capB), and chromosome (BA5345) sequences could detect 10, 250, and 100fg of genomic DNA and 10, 100, and 50 copies of the DNA targets harboured in recombinant plasmids, respectively. The lef and capB LAMP assays could detect ≥ 1 × 103CFU per mL of bacteria in spiked human blood samples, while BA5345 LAMP assay could detect ≥ 1 × 104CFU of bacteria per mL of spiked blood. The amplification was monitored in real-time by turbidimeter, and visual detection was also accomplished under normal and UV light after adding SYBR Green 1 dye on completion of the reaction. The assay set was found to be highly sensitive and did not cross-react with the closely related Bacillus spp. and other bacterial strains used in the study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.