Abstract

Russula senecis, a common poisonous mushroom, is widely distributed in China. Mushroom poisoning is becoming a major threat to human health and its rate is increasing worldwide. For the first time, we developed a set of loop-mediated isothermal amplification (LAMP) assays based on a real-time fluorescence and a visualization method to detect R. senecis, and the visual LAMP reaction system was optimized to further shorten the reaction time. Both real-time LAMP and visual LAMP could detect as low as 3.2pg of genomic DNA. In addition, fried and digested mushrooms were used to validate the proposed LAMP method, and mushroom mixtures with as low as 1% of the target species could be successfully detected, indicating that the LAMP assays established in this study had good applicability and could be used for clinical sample detection and forensic identification. Furthermore, the LAMP assays were proven to be comparable to the real-time PCR method. KEY POINTS: • A set of loop-mediated isothermal amplification (LAMP) assays based on real-time fluorescence and visualization to detect Russula senecis was developed. • Both real-time LAMP and visual LAMP can be used to detect genomic DNA at concentrations as low as 3.2pg. • By simulating mushroom processing and digestion in gastric juice, LAMP assays were proved to have good applicability and could be used for clinical diagnosis and forensic analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.