Abstract

Single-pass intestinal perfusion (SPIP) method is a widely used experimental model to determine the intestinal permeability of drugs. These studies are performed in the presence of a reference standard (metoprolol, MT) and a zero permeability marker (phenol red, PR). Therefore, it is important to develop a validated method for simultaneous determination of the investigated compound along with MT and PR. The aim of this study was to develop a reversed phase high-performance liquid chromatography (RP-HPLC) method with UV-detection for the simultaneous determination of atenolol (ATN), MT, and PR in the perfusion medium used in SPIP experiments. Separation of compounds were performed using an InertSustain C18 (250 × 4.6 mm, 5 µm) HPLC column at 35 °C. The mobile phase was a mixture of acetonitrile and phosphate buffer (pH 7.0, 12.5 mM) in gradient elution, and was delivered at a flow rate of 1 mL/min. The acetonitrile ratio of the mobile phase increased linearly from 10 to 35 % over 15 min. The injection volume was 20 µL, and ATN, MT and PR were detected at 224 nm. The retention times under optimum HPLC conditions were 5.028 min, 12.401 min, and 13.507 min for ATN, MT and PR, respectively. The developed RP-HPLC method was validated for selectivity, specificity, calibration curve and range, accuracy and precision, carry-over effect, stability, reinjection reproducibility, recovery and robustness. The method was linear for ATN (0.76–50 μg/mL), MT (1.14–50 μg/mL), and PR (0.47–20 μg/mL) with determination coefficients of 0.9999, 0.9994 and 0.9998, respectively. The results obtained for all validation parameters of the developed RP-HPLC method met the required limits of the ICH M10 Guideline.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.