Abstract

AimsNeutrophil extracellular trap (NET), which is formed by DNA threads, induces septic shock by aggravating systemic inflammation. An intravenous administration of deoxyribonuclease is regarded as a compelling modality for treating septic shock. However, alternative routes should be chosen when cutaneous veins are all collapsed due to hypotension. In this study, we genetically engineered this enzyme to develop a rectal suppository formulation to treat septic shock. Main methodsDnase1 was mutated at two amino acid residues to increase its stability in the blood and fused with a cell-penetrating peptide CR8 to increase its absorption through the rectal mucosa, which is designated AR-CR8. The life-saving effect of AR-CR8 was evaluated in a LPS-induced shock mouse model. Key findingsAR-CR8 was shown to remove NETs effectively in human neutrophils. When AR-CR8 was administered to the mouse rectum, the deoxyribonuclease activity in the mouse serum was significantly increased. In the LPS-induced shock model, 90 % of the control mice died over 72 h after LPS injection. In contrast, the rectal administration of AR-CR8 showed a mortality rate of 30 % by 72 h after LPS injection. The Log-rank test revealed that the survival rate is significantly higher in the AR-CR8 group. The NET markers in the mouse serum were enhanced by LPS, and significantly downregulated in the AR-CR8 group. These results suggest that AR-CR8 ameliorates LPS-induced shock by degrading NETs. SignificanceThe engineered DNASE1 could be developed as a rectal suppository formulation to treat septic shock urgently at out-of-hospital places where no syringe is available.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.