Abstract

Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus, is the predominant cause of severe enteropathogenic diarrhea in swine. A simple, rapid, specific, and sensitive method is critical for monitoring PEDV on pig farms. In this study, a simple and rapid lateral flow immunoassay detection system that integrates europium (Eu) (III) chelate microparticles was developed to identify PEDV in fecal swabs. This newly developed diagnostic sandwich immunoassay utilizes lateral flow test strips (LFTSs). The fluorescence peak heights of the test line (HT) and the control line (HC) were measured using a fluorescence strip reader, and the HT/HC ratio was used for quantitation. The limit of detection of PEDV with this LFTS was ??ten times the median tissue culture infectious dose (TCID50) per mL??. Fecal swab samples were used to determine the cutoff value. Field samples, various PEDV strains and other viruses were used to determine the sensitivity and specificity of the Eu (III) chelate microparticle-based LFTSs, which were 97.8% and 100%, respectively, with a cutoff value of 0.05, as compared with reverse transcription polymerase chain reaction (RT-PCR). In samples from piglets experimentally infected with PEDV, the results were in high agreement with those obtained by RT-PCR. Epidemiological surveillance of PEDV using the LFTSs ??in areas threatened by African swine fever virus?? suggested that the PEDV positive rate on pig farms had significantly decreased, mainly due to the implementation of strict biosecurity measures. The results indicate that the Eu (III) chelate microparticle-based LFTS system is a rapid, sensitive, and reliable method for the identification of PEDV, indicating its suitability for epidemiological surveillance of PEDV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.