Abstract
Previous investigators have developed prediction equations to estimate arterial occlusion pressure (AOP) for blood flow restriction (BFR) exercise. Most equations have not been validated and are designed for use with expensive cuff systems. Thus, their implementation is limited for practitioners. To develop and validate an equation to predict AOP in the lower limbs when applying an 18cm wide thigh sphygmomanometer (SPHYG18cm). Healthy adults (n = 143) underwent measures of thigh circumference (TC), skinfold thickness (ST), and estimated muscle cross-sectional area (CSA) along with brachial and femoral systolic (SBP) and diastolic (DBP) blood pressure. Lower-limb AOP was assessed in a seated position at the posterior tibial artery (Doppler ultrasound) using a SPHYG18cm. Hierarchical linear regression models were used to determine predictors of AOP. The best set of predictors was used to construct a prediction equation to estimate AOP. Performance of the equation was evaluated and internally validated using bootstrap resampling. Models containing measures of either TC or thigh composition (ST and CSA) paired with brachial blood pressures explained the most variability in AOP (54%) with brachial SBP accounting for majority of explained variability. A prediction equation including TC, brachial SBP, and age showed good predictability (R2 = 0.54, RMSE = 7.18mmHg) and excellent calibration. Mean difference between observed and predicted values was 0.0mmHg and 95% Limits of Agreement were ± 18.35mmHg. Internal validation revealed small differences between apparent and optimism adjusted performance measures, suggesting good generalizability. This prediction equation for use with a SPHYG18cm provided a valid way to estimate lower-limb AOP without expensive equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.