Abstract
AbstractOver the past two decades, the number of people with arm disabilities has dramatically increased. Many researchers have begun to concentrate on developing technologies to address this challenge. Exoskeleton is one of the most successful technologies out of these since it does not require medical staff to accompany the patients and can continually rehabilitate the patients until they regain the ability to move voluntarily. However, the majority of exoskeletons are anchored to the ground and individuals are unable to purchase one due to its high manufacturing costs. Furthermore, since this type of exoskeleton is anchored to the ground, patients must go to hospitals to get rehabilitation services. In this study, a portable assistive exoskeleton for human arm motions is designed to address this problem. This device can carry patients' arms to the desired position by adhering to a prescribed trajectory by medical specialists. The main parts of this exoskeleton are made of polylactic acid and produced using 3D printing technology. Therefore, the total manufacturing costs of the exoskeleton are not excessive and the weight of it is not high as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.