Abstract

In this study, a porosity-graded micro porous layer (MPL) was prepared using the double coating method to enhance the water removal ability of the gas diffusion layer (GDL). In the double MPL, the porosity of each layer was controlled using thermal expandable graphite (TEG), which could produce pores in MPL through thermal expansibility. The porosity of the inner layer of the porosity-graded MPL was smaller than the outer layer, so the gradient direction in porosity was from the MPL/catalyst layer interface to the gas diffusion backing layer (GDBL)/MPL interface. In addition, the pore forming ability of TEG and the water removal ability of porosity-graded MPL were characterized. The performance of the porosity-graded MPL was evaluated and compared to the single layer conventional MPL. The porosity-gradient structure in MPL increased the water permeability of GDL and the performance of the single cell in the high current density region. Since the porosity-graded MPL increased the water removal ability of GDL, concentration loss due to water flooding in the high current density region was decreased. These results demonstrate that porosity-graded MPL was beneficial to PEMFC, which has to operate in the high current density region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.