Abstract
AbstractCertain vaccines that have been developed against COVID‐19 require a storage temperature between around −60 and −70°C. It is challenging for logistics to assure these temperature limits. However, the use of dry ice has to be viewed critically for safety and environmental reasons. Additionally, its use is heavily regulated in air cargo. To preserve the cooling chain during transport and to increase the energy efficiency, special transport containers with an incorporated phase‐change material (PCM) can be used. In the first step, PCM candidates were investigated via differential scanning calorimetry (DSC) and in an ultra‐low freezer with a minimal temperature of −85°C. None of the candidates crystallised reliably without nucleating agents. After the initial tests, the eutectic LiBr·5H2O + H2O with a suitable nucleating agent was identified as favourite PCM. Thermal cycling stability tests showed that this PCM crystallises reliably above −80°C and possesses a melting plateau at −67°C. Further tests in vacuum‐insulated transport boxes of the company va‐Q‐tec show that, depending on the box type, the internal temperature stays below −60°C for over 48 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.