Abstract
Directing stem cells to the heart is critical in producing an effective cell therapy for myocardial infarction (MI). Mesenchymal stem cells (MSCs) offer an exquisite drug delivery platform with environment-sensing cytokine release and MSCs have shown therapeutic potential in MI. Peptide-based targeting offers a novel method to increase cell homing, wherein MI-specific peptides, identified by phage display, are synthesized with a palmitic acid tail to facilitate cell membrane integration. Phage-peptides were screened in a mouse MI model and four peptides (CRPPR, CRKDKC, KSTRKS, and CARSKNKDC) were selected and synthesized as palmitated derivatives for further investigation. Cell coating was optimized and coating persistence and cytotoxicity were evaluated. MSCs were coated with peptides, injected into mice with MI, and MSCs in the heart quantified. Greater numbers of MSCs were found in heart of animals treated with the peptide-coated MSCs compared to uncoated controls. MSC numbers had positive correlation with MI severity in peptide-coated cells but a negative correlation in MSCs alone. A transient cell coating (“painting”) method has been developed that labels cells efficiently, non-toxically and increases cell localization in MI hearts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.