Abstract
Despite the diverse and potent bioactivities displayed by axially chiral biaryl natural products, their application in drug discovery is limited by restricted access to these complex molecular scaffolds. In particular, fundamental challenges remain in controlling the site- and atroposelectivity in biaryl coupling reactions. In contrast, Nature has a wealth of biosynthetic enzymes that catalyze biaryl coupling reactions with catalyst-controlled selectivity. In particular, a growing subset of fungal P450s have been identified to catalyze site- and atroposelective biaryl couplings. Herein, we optimize a whole-cell biocatalytic platform in Pichia pastoris to synthesize biaryl molecules through the recombinant production of the fungal P450 KtnC. Moreover, engineering redox self-sufficient fusion enzymes further improves the efficiency of the system. Altogether, this work provides a platform for biaryl coupling reactions in yeast that can be applied to engineering a currently underexplored pool of fungal P450s into selective biocatalysts for the synthesis of complex biaryl compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.