Abstract

Seabed deformation due to the fault failure have both a spatial variation and temporal history. When the faulting process initiates at a certain point beneath seabed, the failure spreads out to neighboring points, resulting in temporal changes of deformation. In particular, such a process induces tsunami waves from the vertical motion of seabed. The uprising speed of seabed affects the formation of initial surface profile, eventually altering the arrival time and runup of tsunamis at the coast. In this work, we developed a numerical model that can simulate the generation and propagation of tsunami waves by considering the horizontal and vertical changes of seabed in an active and dynamic manner. For the verification of the model, it was applied to the 2011 Tohoku-oki earthquake in Japan and the results confirmed that the accuracy was improved compared to the existing passive and static model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call