Abstract

In this paper a novel strain gauge system on stainless steel and 96% alumina substrates is described incorporating a Wheatstone bridge network, thick-film piezoresistive strain gauges, instrumentation, and a novel thermal and resistor mismatch tolerance correction software. The resistors in the Wheatstone bridge are fabricated with a novel mixture of ruthenium, bismuth and indium oxides and three different thick-film layouts are used. Mechanical measurements are performed using the cantilever beam set-up. The linearity, hysteresis, repeatability, reproducibility, creep, stability and temperature effects are measured for the novel thick-film pastes. The linearity and temperature effect on the output of the different bridge layouts are also examined. The printing of resistors using thick-film technology can result in resistor tolerances of %. Also, thick-film piezoresistors are intrinsically cross sensitive to temperature. These two properties cause an offset voltage to appear at the output of the bridge under no-load/load conditions and a subsequent error in the calculated applied strain. In order to compensate for the offset error voltage, novel correction software has been developed and implemented using a microcontroller. The error in the predicted strain was measured before and after application of the correction software under different bridge layouts and temperature conditions. The error was reduced from a maximum of 45% to approximately 1%. The effectiveness of the correction software in reducing the error suggests that this technique can be used without the need for trimming or bridge balancing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.