Abstract

Abnormal remodeling of collagen and extracellular matrix caused by the accumulation of senescent fibroblasts in the dermis is the most likely cause of skin aging. Therefore, the application of "senolysis," in which only senescent cells are cleared from the body, has a potential in the development of antiaging treatments for skin. However, markers that label senescent fibroblasts only reflect the state of senescence, and it is important to develop markers as therapeutic targets to aid senolysis application. We investigated the potential of serotonin 2A receptor (HTR2A), which is involved in melanin production in response to UV light, as a senescent cell marker. The results showed that HTR2A is upregulated in aging dermal fibroblasts but is expressed at low levels in proliferating young cells. Flow cytometry demonstrated the presence of many HTR2A-positive cells in the aging cell population and few in the young cells. Furthermore, antibody-dependent cytotoxicity assays revealed that HTR2A preferentially sensitizes senescent fibroblasts and specifically damages only senescent cells by NK cells that recognize it. In conclusion, selective labeling of the novel senescent cell marker, HTR2A, could preferentially eliminate senescent cells and may contribute to the future development of novel skin senolysis approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call