Abstract

The main objective of this study is to develop a novel green-nanofluid from Sapindus Saponaria for its application in enhanced oil recovery (EOR) processes. The bio-nanofluid is composed of a green active compound (AGC), bio-ethanol, and commercial surfactant (SB) at a low concentration. The AGC was obtained from soapberry “Sapindus Saponaria” using the alcoholic extraction method and characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and critical micellar concentration (CMC) to verify the content of saponins as active agents with surface-active behavior. Three types of silica-based nanoparticles were used and characterized by FTIR, TGA, and dynamic light scattering (DLS) analysis. Two commercial nanoparticles (SiO2-C1 and SiO2-C2) were evaluated, and a third one (SiO2-RH) was synthesized from rice husks as an ecological nanomaterial alternative. The performance of the adjusted systems was evaluated by capillary number (effective interfacial tension (σe), wettability and viscosity) and finally with coreflooding tests under reservoir conditions. The FTIR results confirm the presence of saponins in the AGC. In addition, according to the TGA, the AGC is stable under the reservoir temperature of interest. Regarding nanoparticles, siloxane and silanol groups were observed in all samples. For SiO2-C1 and SiO2-C2 samples, the weight loss was lower than 5% for temperatures up to 700 °C. Meanwhile, SiO2-RH had a weight loss of 12% at 800 °C, and 8% at reservoir temperature. Results show a decrease in the interfacial tension (IFT) of up to 83% of the tuned system with only 100 mg·L−1 of rice husk nanoparticles compared to the system without nanoparticles, reaching values of 1.60 × 10−1 mN·m−1. In the coreflooding test, increases of up to 13% of additional crude oil were obtained using the best bio-nanofluid. This work presents an excellent opportunity to include green alternatives to improve conventional techniques with added value during the injection of chemicals in chemical-enhanced oil recovery (CEOR) processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call