Abstract

In the present work, UiO-66/xanthan gum/alginate bionanocomposite adsorbent was fabricated using the in-situ crosslinking-gelation method, characterized by different techniques, and finally used for the removal of methylene blue dye from aqueous solution. Adsorption studies were performed using batch experiments and the influencing operational parameters such as contact time, initial pH solution, temperature, initial dye concentration, adsorbent dose, pHPZC, swelling, regeneration, and reuse of the adsorbent were investigated. The various kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion) and isotherm models (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) were used to analysis of the experiment results. The results were best fitted to the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption capacity of dye on the adsorbent was obtained at 9.96 mg/g at pH = 11. The value of pHPZC for the adsorbent was obtained at about 8. According to thermodynamic parameters, the dye adsorption was found as spontaneous and endothermic due to the negative value of the ΔG° and ΔH°. After 4 times of reusability cycles, the adsorption efficiency remained above 86 %, which represented a certain regeneration ability. As a result, this research indicates that UiO-66/xanthan gum/alginate bionanocomposite can be utilized as a promising bio-adsorbent for azo dye removal from contaminated wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call