Abstract
This work proposes a novel flexible manipulator consisting of a series of 2-DOF vertebrae based on a ball-andsocket joint that is connected by a ball-shaped surface and a cupshaped socket and constrained by pins for circumferential rotation. This manipulator can demonstrate outstanding torsional stiffness since the circumferential rotation between the vertebrae is constrained by four ball pins. The point contact between ball pins and guideways effectively reduces the friction between the vertebrae, thus allowing the designed manipulator to yield a smooth bending shape with constant curvature. This manipulator features high axial and torsional stiffness, excellent bending performance, sufficient loading capacity, and convenient integration with surgical instruments. Moreover, the excellent torsional stiffness enables this manipulator to efficiently transfer torque and be applied in in-situ torsional motion, effectively addressing the typical issue of limited dexterity for torsional motion. The kinematic modeling of the proposed manipulator under in-situ torsional motion has been derived, and its workspace has been analyzed. A robotic system has been assembled, and experiments have verified the proposed design and modeling validity. The results show that the maximum position errors in bending motion are 2.39% (horizontal direction) and 1.98% (vertical direction), and its torsional stiffness is 21.13N∙mm/deg, which is 46 times higher than that of a typical spherical flexible manipulator (SFM). Such merits support this manipulator excellently performing the in-situ torsional motion with a maximum average position error of 3.58%. Furthermore, a phantom test of the larynx has been performed to verify the potential of clinical feasibility.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have