Abstract

Objectives: An integrated in vitro inhalation approach was outlined to estimate potential adverse acute inhalation effects of aerosols from commercial nebulizer applications used for purposeful room conditioning such as disinfection, scenting or others. Aerosol characterization, exposure estimation and evaluation of acute biological effects by in vitro inhalation were included to generate dose-response data, allowing for determination of in vitro lowest observable adverse effect levels (LOAELs). Correlation of these to estimates of human lung deposition was included for quantitative in vitro to in vivo extrapolation approach (QIVIVE) for acute effects during human exposure.Methods: To test the proposed approach, a case study was undertaken using two realistic test materials. An acute in vitro inhalation setup with air-liquid interface A549-cells in an optimized exposure situation (P.R.I.T.® ExpoCube®) was used to expose cells and analysis of relevant biological effects (viability, mitochondrial membrane potential, stress, IL-8 release) was carried out. Results: The observed dose-responsive effects in a sub-toxic dose-range could be attributed to the main component of one test material and its presence in the aerosol phase of the nebulized material. QIVIVE resulted in a factor of at least 256 between the in vitro LOAEL and the estimated acute human lung exposure for this test material.Conclusions: The case-study shows the value of the non-target in vitro inhalation testing approach especially in case of a lack of knowledge on complex product composition. It is expected that approaches like this will be of high value for product safety and environmental health in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call