Abstract
Gluten, a group of ethanol-soluble proteins present in the endosperm of cereals, is extensively used in the food industry due to its ability to improve dough properties. However, gluten is also associated with a range of gluten-related diseases (GRDs), such as wheat allergies, celiac disease, and gluten intolerance. The recommended treatment for GRDs patients is a gluten-free diet. To monitor adherence to this diet, it is necessary to develop gluten-detection systems in food products. Among the available methods, immunodetection systems are the most popular due to their simplicity, reproducibility, and accuracy. The aim of this study was to generate novel high-affinity antibodies against gluten to be used as the primary reactant in an enzyme-linked immunosorbent assay (ELISA) test. These antibodies were developed by constructing an immune library from mRNA obtained from two celiac patients with a high humoral response to gluten-related proteins. The resulting library (composed by 1.1x107) was subjected to selection against gliadin using phage display technology. Following several rounds of selection, the Fab-C was selected, and demonstrated good functionality in ELISA tests, presenting a limit of detection of 15 mg/kg for detection of gluten in spiked mixtures and food products. The methodology can discriminate gluten-free products according to the current legislation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.