Abstract
An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30×30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6×7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifier, fiber optically coupled to a 1134 (h)×486 (v) frame transfer CCD camera. The camera system was designed to be compatible with a Navy-sponsored accelerator neutron source. The planned neutron source is an RF quadrupole accelerator that will provide a fast neutron flux of 10 7 n/cm 2-s (at a source distance of 1 m) at an energy of about 2.2 MeV and a thermal neutron flux of 10 6 n/cm 2-s at a source L/ D ratio of 30. The electronic camera produced good quality real-time images at these neutron levels. On-chip integration could be used to improve image quality for low flux situations. The camera and accelerator combination provided a useful non-reactor neutron inspection system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.