Abstract

In this paper, an innovative methodology for the conceptual design of hybrid-powered airplanes is proposed. In particular, this work focuses on parallel hybrid architectures, in which the thermal engine is mechanically coupled to an electric motor, both supplying propulsive power during a limited number of flight phases, e.g. during takeoff and climb. This innovative solution is the subject of several studies being carried out since the current decade. In this paper, a brief overview of the works conducted by other researchers is provided. Then, an overall aircraft design methodology is proposed, which is derived from the most renewed design algorithms. The original contribution of this work is represented by the development of a methodology for the design of hybrid propulsion systems. Moreover, the proposed method is integrated within a global aircraft design methodology. In particular, several effects of the innovative system on the entire aircraft are considered, for instance the variation of the empty mass or the impacts on fuel consumption. The paper ends with some case studies of the proposed design methodology, and a discussion of the obtained results is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.