Abstract
Carbon fiber–reinforced polymer (CFRP) rods have been considered as a candidate material for prestressed concrete applications because of their superior properties. For current applications, successful use of CFRP rods is linked to an efficient anchorage system design. This paper presents a newly developed anchorage system for CFRP rods and the design concept that the extrusion process is used to generate gripping force. The proposed anchorage system consists of a steel barrel and an aluminum sleeve, and an extrusion region is designed on the outside of barrel to generate a suitable contact pressure distribution on the CFRP rod. A mathematical model was proposed to estimate the contact pressure on the CFRP rod and the capacity of anchorage system. The simulation of extrusion and loading process was conducted with a three-dimensional (3D) finite-element (FE) model. The key design parameters of anchorage system were analyzed to obtain an optimized parameter combination. The experimental validation showed that the new anchorage system is capable of allowing the CFRP rod to attain the ultimate tensile strength.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have