Abstract

Steady state and time resolved spectroscopic measurements on an organic dyad, 1-(4-chlorophenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone, where the donor 1-methoxynaphthalene is connected with the acceptor p-chloroacetophenone by an unsaturated olefinic bond, in presence of TiO2 nanoparticles were made at the ambient temperature. Time resolved fluorescence measurements reveal that the rate parameters associated with charge separation, kCS, within the dyad increases whereas charge recombination rate reduces when the surrounding medium is changed from chloroform to TiO2 nanoparticles. The observed results indicate that the dyad being combined with TiO2 nanoparticles may form organic-inorganic nanocomposite systems useful for developing light energy conversion devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call