Abstract

We demonstrate the use of a novel design of a photoelectron microscope in combination to an imaging energy filter for momentum resolved photoelectron detection. Together with a time resolved imaging detector, it is possible to combine spatial, momentum, energy, and time resolution of photoelectrons within the same instrument. The time resolution of this type of energy analyzer can be reduced to below 100 ps. The complete ARUPS pattern of a Cu(111) sample excited with He I, is imaged in parallel and energy resolved up to the photoelectron emission horizon. Excited with a mercury light source (h nu=4.9 eV), the Shockley surface state at the energy threshold is clearly imaged in k-space. Electron-electron interactions are observed in momentum space as a correlation hole in two-electron photoemission. With the high transmission and the time resolution of this instrument, possible new measurements are discussed: Time and polarization resolved ARUPS measurements, probing change of bandstructure due to chemical reaction, growth of films, or phase transitions, e.g., melting or martensitic transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.