Abstract

Abstract The formation of thermally and mechanically induced near-surface microstructures in the form of white layers leads to different hardness properties in these areas. Therefore, this paper conducts systematic surface hardness measurements and uncertainty quantification utilizing the Monte Carlo Method (MCM) in accordance with the Guide to the Expression of Uncertainty in Measurement (GUM). Furthermore, several meta-models describing the hardness course in relationship to the material depth are used to model this nonlinear relationship via machine learning. The evaluation and selection of the optimal model considers the trade-off between measurement uncertainty and prediction quality in terms of mean squared error (MSE). The resulting measurement uncertainty is to be used for the calibration of a non-destructive micromagnetic material sensor. This will then be implemented for in-process monitoring in the outer diameter longitudinal turning process. This should make it possible to detect white layers during machining and to avoid them accordingly by controlling the machine parameters. By means of a soft sensor, the corresponding target value is to be derived from the micromagnetic material sensor measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call