Abstract

The interest of our study is the in-vivo transcranial visualization of blood flow without removal of the skull. The strong attenuation, scattering, and distortion by the skull bones (or other tissues) make it difficult to use currently existing methods. However, blood flow can still be detected by using the ultrasonic speckle reflections from the blood cells and platelets (or contrast agents) moving with the blood. The methodology specifically targets these random temporal changes, imaging the owing region and eliminating static components. This process analyzed over multiple exposures allows an image of the blood flow to be obtained, even with negative acoustic effects of the skull in play. Experimental results show this methodology is able to produce both 2D and 3D images of the owing region, and eliminates those regions of static acoustic sources as predicted. Images produced of the owing region are found to agree with the physical size of the vessel analogues, and also found to provide a qualitative measure on the amount of flow through the vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.