Abstract

The object of research is a special-purpose radio communication system. A special purpose radio communication system is affected by many different destructive influences. The main ones are deliberate interference and cybernetic impact of various purposes. The above causes the search for new scientific approaches to identify and identify the destructive impact on special-purpose radio communications in order to increase the operational efficiency of special-purpose radio communications systems. In this work, the problems of developing a mathematical model for managing the radio resource of special-purpose radio communication systems based on the evolutionary approach are solved. In the course of the research, the authors of the work used the main provisions of the theory of artificial intelligence, the theory of automation, the theory of complex technical systems, as well as general scientific methods of cognition, namely analysis and synthesis. The proposed methodological approach was developed taking into account the practical experience of the authors of this work during military conflicts of the last decade. The research results will be useful for: – development of new radio resource management algorithms; – substantiation of recommendations for improving the efficiency of radio resource operational management; – analysis of the radio-electronic situation during the conduct of hostilities (operations); – when creating promising technologies for increasing the efficiency of radio resource operational management; – assessment of the adequacy, reliability, sensitivity of the scientific and methodological apparatus for the operational management of the radio resource; – development of new and improvement of existing radio resource management models. Directions for further research will be aimed at developing a methodology for intelligent control of the radio resource of special-purpose radio communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.