Abstract

High pressure torsion offers unique conditions for the consolidation of metallic particles at room temperature owing to the high hydrostatic compressive stresses combined with the high shear strain. A Mg-Al2O3 composite was produced by consolidation of machining chips of pure magnesium with 10% in volume of alumina particles. The consolidation process was investigated by optical and scanning electron microscopy and X-ray microtomography. It is shown that shear deformation concentrates along thick alumina particle layers in the initial stage of deformation. A significant fraction of the hard phase particles are pushed into the outflow in quasi-constrained HPT and a homogeneous composite is achieved after significant straining. The composite exhibits a refined microstructure, a higher hardness and improved resistance against room temperature creep compared to pure magnesium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.